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Abstract. In this paper, we suggest and analyze a class of iterative schemes for solving multivalued
quasi variational inclusions using the resolvent operator method. As special cases, we obtain a num-
ber of known and new iterative schems for solving variational inequalities and related optimization
problems. The results obtained in this represent an improvement and a significant refinement of
previously known results.
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1. Introduction

Multivalued quasi variational inclusion, which was introduced and studied by Noor
[l9, 20], is a useful and important extension of the variational principles with a
wide range of applications in industry, physical, regional, social, pure and applied
sciences. Some special cases have been studied by many authors including Ding
[4], Huang [9], Noor [13–15] and Noor and Noor [12]. It is worth mentioning
that multival- ued quasi variational inclusions include mixed (quasi) variational
inequalities, complementarity problems and nonlinear programming problems as
special cases. Quasi variational inclusions provide us with a unified, natural, novel,
innovative and general technique to study a wide class of problems arising in dif-
ferent branches of mathematical and engineering sciences, There are a substantial
number of numerical methods including projection method and its variant forms,
Wiener-Hopf equations, auxiliary principle and descent for solving various classes
of variational inequalities and complementarity problems, Noor [16, 17]. It is well
known that the projection methods, Wiener-Hopf equations techniques and auxil-
iary principle techniques cannot be extended and modified for solving variational
inclusions. This fact motivated to develop another technique, which involves the
use of the resolvent operator associated with maximal monotone operator. In this
technique, the given operator is decomposed into the sum of two (maximal) mono-
tone operators. Such a method is known as the operator splitting method. The
operator splitting method and related technique have studied by many authors, see,
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for example, Noor [21] and references therein. Using this technique, one shows that
the variational inequalities (inclusions) are equivalent to the fixed point problem.
This alternative formulation was used to develop numerical methods for solving
various classes of mixed variational inequalities (inclusions) and related problems,
see [4, 8–26]. In this paper, we use this alternative formulation to suggest and
analyse two-step iterative schemes for multivalued quasi variational inclusions.
Our results extend and generalise the previously known results.

2. Preliminaries

LetH be a real Hilbert space whose inner product and norm are denoted by〈·, ·〉
and‖ · ‖ respectively. LetC(H) be a family of all nonempty compact subsets of
H . Let T , V : H → C(H) be the multivalued operators andg : H → H be a
single-valued operator. LetA(·, ·) : H ×H → H , consider the problem of finding
u ∈ H ,w ∈ T (u), y ∈ V (u) such that

0 ∈ N(w, y)+ A(g(u), u), (2.1)

which is called the multivalued quasi variational inclusions, see Noor [19, 20].
Some special cases of (2.1) have been studied by Noor [13–15], Huang [9], Ding
[4], Noor–Noor and Rassias [22] and Uko [27] recently. A number of problems
arising in structural analysis, mechanics and economics can be studied in the frame-
work of the multivalued quasi variational inclusions; see, for example, [3, 25,
26].

2.1. SPECIAL CASES

I. If A(·, u) = ∂φ(·, u) : H × H → H , the subdifferential of a convex, proper
and lower semi-continuous functionφ(·, u) with respect to the first argument, then
problem (2.1) is equivalent to findingu ∈ H ,w ∈ T (u), y ∈ V (u) such that

〈N(w, y), v − g(u)〉 + φ(v, u)− φ(g(u), u) > 0, for all v ∈ H, (2.2)

which is called the set-valued mixed quasi variational inequality. Problem (2.2) has
been studied by Noor [13,14] using the resolvent equations technique.

II. If A(g(u, v) ≡ A(g(u)), for all v ∈ H , then problem (2.1) is equivalent to
findingu ∈ H ,w ∈ T (u), y ∈ V (u) such that

0 ∈ N(w, y)+ A(g(u)), (2.3)

a problem considered and studied by Noor [15] using the resolvent equations tech-
nique. See also [11, 27] for the related work.

III. If A(g(u)) ≡ ∂φ(g(u)) is the subdifferential of a proper, convex and lower,
semicontinuous functionφ : H → R∪{+∞}. Then problem (2.1) reduces to: find
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u ∈ H,w ∈ T (u), y ∈ V (u) such that

〈N(w, y), v − g(u)〉 + φ(v)− φ(g(u)) > 0. (2.4)

Problem (2.4) is known as the set-valued mixed variational inequality and has been
studied by Noor–Noor and Rassias [22] and its special cases by Huang [9] and Uko
[27].

IV. If the functionφ(u, v) for all v ∈ H , is the indicator function of a closed convex
setK(u) in H , that is,

φ(u, v) = K(u)(u) =
{

0, if u ∈ K(u)
+∞, otherwise,

then problem (2.2) is equivalent to findingu ∈ H,w ∈ T (u), y ∈ V (u), g(u) ∈
K(u) such that

〈N(w, y), v − g(u)〉 > 0, for all v ∈ K(u), (2.5)

a problem considered and studied by Noor [18], using the projection method and
the implicit Wiener-Hopf equations technique.

V. If K∗(u) = {u ∈ H, 〈u, v〉 > 0, for all v ∈ K(u)} is a polar cone of the convex
coneK(u) in H , then problem (2.6) is equivalent to findingu ∈ H , w ∈ T (u),
y ∈ V (u) such that

g(u) ∈ K(u), N(w, y) ∈ K∗(u) and 〈N(w, y), g(u)〉 = 0,

which is called the generalized multivalued implicit complementarity problem and
appears to be a new one.

For special choices of the operatorsT ,N(·, ·), g and the convex setK, one can
obtain a large number of complementarity and implicit (quasi) complementarity
problems, see, for example, [4, 8–23] and the references therein. We would like to
mention that the problem of finding a zero of the sum of two maximal monotone
operators, location problem, minu∈H {f (u) + g(u)}, wheref, g are both convex
functions, various classes of variational inequalities and complementarity problems
are very special cases of problem (2.1). Thus it is clear that problem (2.1) is general
and unifying one and has numerous applications in pure and applied sciences.

We now recall some basic concepts and results.

DEFINITION 2.1 [2]. If T is a maximal monotone operator onH , then, for a
constantρ > 0, the resolvent operator associated withT is defined by

JT (u) = (I + ρT )−1(u), for all u ∈ H,
whereI is the identity operator. It is known that the monotone operatorT is max-
imal monotone if and only if the resolvent operatorJT is defined everywhere on the
space. Furthermore, the resolvent operatorJT is single-valued and nonexpansive.
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REMARK 2.1. Since the operatorA(·, ·) is a maximal monotone operator with
respect to the first argument, for a constantρ > 0, we denote by

JA(u) ≡ (I + ρA(u))−1(u), for all u ∈ H,
the resolvent operator associated withA(v, u) ≡ A(u) for all v ∈ H . For example,
if A(v, u) = ∂φ(v, u), for all u, v ∈ H , andφ(v, u) : H × H → H is a proper,
convex and lower semicontinuous with respect to the first argument, then it is
well-known that∂φ(v, u) is a maximal monotone operator with respect to the first
argument. In this case, the resolvent operatorJA(u) = J∂φ(u) is

J∂φ(u) = (I + ρ∂φ(·, u))−1(u) = (I + ρ∂φ(u))−1(u) for allu ∈ H,
which is defined everywhere on the spaceH , where∂φ(u) ≡ ∂φ(v, u) for all
v ∈ H . For a recent state-of-the-art of the convex analysis, see Gao [5].

DEFINITION 2.2. For allu1, u2 ∈ H , the operatorN(·, ·) is said to be strongly
monotone and Lipschitz continuous with respect to the first argument, if there exist
constantsα > 0, β > 0 such that

〈N(·, w1)−N(·, w1), u1−u2〉>α‖u1−u2‖2, for all w1∈T (u1), w2∈T (u2)

µ‖N(u1, ·)−N(u2, ·)‖ 6 β‖u1 − u2‖.
In a similar way, we can define strong monotonicity and Lipschitz continuity of the
operatorN(·, ·) with respect to second argument.

DEFINITION 2.3. The set-valued operatorV : H → C(H) is said to beM-
Lipschitz continuous, if there exists a constantξ > 0 such that

M(V (u), V (v)) 6 ξ‖u− v‖, for all u, v ∈ H,
whereM(·, ·) is the Hausdorff metric onC(H).

We also need the following condition.

ASSUMPTION 2.1. For allu, v,w ∈ H , the resolvent operatorJA(u) satisfies the
condition

‖JA(u)w − JA(v)w‖ 6 ν‖u− v‖,
whereν > 0 is a constant.

Assumption 2.1 is satisfied when the operatorA is monotone jointly with re-
spect to two arguments. In particular, this implies thatA is monotone with respect
to first argument, see Noor [20].
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3. Main Results

In this section, we use the resolvent operator technique to establish the equivalence
between the multi-valued quasi variational inclusions and the implicit resolvent
fixed points. This equivalence is used to suggest an iterative method for solving the
quasi variational inclusions. For this purpose, we need the following result.

LEMMA 3.1. (u,w, y) is a solution of (2.1) if and only if(u,w, y) satisfies the
relation

g(u) = JA(u)[g(u)− ρN(w, y)], (3.1)

whereρ > 0 is a constant andJA(u) = (I + ρA(u))−1 is the resolvent operator.
Proof. Let u ∈ H , w ∈ T (u), y ∈ V (u) be a solution of (2.1). Then, for a

constantρ > 0,

(2.1)⇐⇒ 0 ∈ ρN(w, y)+ ρA(g(u), u)
⇐⇒ 0 ∈ −(g(u)− ρN(w, y))+ (I + ρA(u))g(u)
⇐⇒ g(u) = JA(u)[g(u)− ρN(w, y)],

the required result. 2
From Lemma 3.1, we conclude that the multivalued quasi variational inclu-

sions (2.1) are equivalent to the implicit fixed point problem (3.1). This alternative
formulation is very useful from both theoretical and numerical analysis points of
view. We use this equivalence to propose some iterative algorithm for solving quasi
variational inclusions (2.1) and related problems.

The relation (3.1) can be written as

u = u− g(u)+ JA(u)[g(u)− ρN(w, u))], (3.2)

whereρ > 0 is a constant.
This fixed point formulation allows us to suggest the following unified iterative

algorithm.

ALGORITHM 3.1. Assume thatT , V : H → C(H), g : H → H andN(·, ·),
A(·, ·) : H × H → H are operators. For a givenu0 ∈ H , compute the sequences
{un}, {wn}, {yn}, {wn} and{yn} by the iterative schemes

wn ∈ T (un) : ‖wn+1 − wn‖ 6 M(T (un+1), T (un)) (3.3)

yn ∈ V (un) : ‖yn+1 − yn‖ 6 M(V (un+1), V (un)) (3.4)

wn ∈ T (zn) : ‖wn+1 − wn‖ 6 M(T (zn+1), T (zn)) (3.5)

yn ∈ V (zn)) : ‖yn+1 − yn‖ 6 M(V (zn+1), V (zn)) (3.6)

zn = (1− βn)un + βn{un − g(un)+ JA(un)[g(un)− ρN(wn, yn)]} (3.7)

un+1 = (1− αn)un + αn{zn − g(zn)+ JA(zn)[g(zn)− ρN(wn, yn)]},
n = 0,1,2, . . . , (3.8)
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where 06 αn, βn 6 1; for all n > 0, and
∑∞

n=0 αn diverges andρ > 0 is
constant. Algorithm 3.1 is similar to the Ishikawa iterative scheme for solving quasi
variational inclusions. Forβn = 0 and αn = λ, Algorithm 3.1 has been studied by
Noor [19,20].

If A(·, v) ≡ ∂φ(·, v) for all v ∈ H , is an indicator function of a closed convex
setK(u) in h, thenJA(u) ≡ PK(u), the projection ofH onto the convex setK(u) in
H . Consequently, Algorithm 3.1 collapses to:

ALGORITHM 3.2. For givenu0 ∈ H , w0 ∈ T (u0), y0 ∈ V (u0), g(u0) ∈ K(u0),
compute the sequences{un}, {wn} and{yn} from the iterative schemes

wn ∈ T (un) : ‖wn+1 − wn‖ 6 M(T (un+1), T (un))

wn ∈ T (zn) : ‖wn+1 − wn‖ 6 M(T (zn+1), T (zn))

yn ∈ V (zn)) : ‖yn+1 − yn‖ 6 M(V (zn+1), V (zn))

yn ∈ V (un) : ‖yn+1 − yn‖ 6 M(V (un+1), V (un))

zn = (1− βn)un + βn{un − g(un)+ PK(un)[g(un)− ρN(wn, yn)]}
un+1 = (1− αn)un + αn{zn − g(zn)+ PK(zn)[g(zn)− ρN(wn, yn)]},
n = 0,1,2, . . . ,

where 0< αn, βn < 1, for all n > 0 and
∑∞

n=0 αn diverges. Algorithm 3.2 appears
to be a new one for multivalued variational inequalities (2.5).

For suitable and appropriate choice of the operatorsT , V , g and the spacesH ,
K; one can obtain a number of algorithms for solving variational inclusions and
related problems.

THEOREM 1. Let the operatorN(·, ·) be strongly monotone with constantα > 0
and Lipschitz continuous with constantβ > 0 with respect to the first argument.
Let g : H → H be strongly monotone with constantδ > 0 and be Lipschitz
continuous with constantδ > 0. Assume that the operatorN(·, ·) is Lipschitz
continuous with constantη > 0 with respect to the second argument andV isM-
Lipschitz continuous with constantξ > 0. LetT : H → C(H) be aM-Lipschitz
continuous with constantµ > 0. If Assumption 2.1 holds and∣∣∣∣ρ − α − (1− k)ηξβ2µ2− η2ξ2

∣∣∣∣ <
√[α − (1− k)ηξ ]2− k(β2µ2 − η2ξ2)(2− k)

β2µ2− η2ξ2

(3.9)

α > (1− k)ηξ +
√
k(β2µ2 − η2ξ2)(2− k) (3.10)

ρηξ < 1− k (3.11)

k = 2(
√

1− 2σ + δ2)+ ν, (3.12)

then there existu ∈ H , w ∈ T (u), y ∈ V (u) satisfying the multivalued quasi
variational inclusions (2.1) and the sequences{un}, {wn}, {yn}, {wn} and{yn} gen-
erated by Algorithm 3.1 converges tou,w, y,w andy strongly inH respectively.
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Proof. If the Assumption 2.1 and the conditions (3.9)–(3.11) hold, then it has
been shown in [19, Theorem 3.1, pp. 106] that there exists a solutionu ∈ H ,
w ∈ T (u), y ∈ V (u) satisfying the variational inclusion (2.1). Letu ∈ H be the
solution of (2.1). Then

u = (1− αn)u+ αn{u− g(u)+ JA(u)[g(u)− ρN(w, y)]} (3.13)

= (1− βn)u+ βn{u− g(u)+ JA(u)[g(u)− ρN(w, y)]}. (3.14)

From (3.8), (3.13) and Assumption 2.1, we have

‖un+1 − u‖ 6 (1− αn)‖un − un−1‖ + αn‖zn − u− (g(zn)− g(u))‖
+ αn‖JA(zn)[g(zn)−ρN(wn, yn)]−JA(u)[g(u)−ρN(w, y)]‖

6 (1− αn)‖un − un−1‖ + αn‖zn − u− (g(zn)− g(u))‖
+ αn‖JA(zn)[g(zn)−ρN(wn, yn)]−JA(u)[g(zn)−ρN(wn, yn)]‖
+ αn‖JA(u)[g(zn)−ρN(wn, yn)]−JA(u)[g(u)−ρN(wn, y)]‖

6 (1− αn)‖un − u‖ + 2αn‖zn − u− (g(zn)− g(u))‖
+ αn‖zn − u− ρ{N(wn, yn)−N(w, yn)}‖
+ αnρ‖N(w, yn)−N(w, y)‖ + αnν‖zn − u‖. (3.15)

Sinceg : H → H is strongly monotone Lipschitz continuous, we have

‖zn − u− (g(zn)− g(u))‖2
= ‖zn − u‖2− 2〈zn − u, g(zn)− g(u)〉 + ‖g(zn)− g(u)‖2
6 (1− 2σ + δ2)‖zn − u‖2. (3.16)

SinceN(·, ·) is a strongly monotone Lipschitz continuous operator with respect
to first argument, it follows that

‖zn − u− ρ{N(wn, yn)− N(w, yn)}‖2
= ‖zn − u‖2− 2ρ〈N(wn, yn)−N(w, yn), zn − u〉
+ ρ2‖N(wn, yn)−N(w, yn)‖2
6 (1− 2ρα + ρ2β2µ2)‖zn − u‖2. (3.17)

Using the Lipschitz continuity of the operatorN(·, ·) with respect to second ar-
gument and the M-Lipschitz continuity ofV , for all w ∈ T (u), y ∈ V (u), we
have

‖N(w, yn)−N(w, y)‖ 6 η‖yn − y‖
6 ηM(V (zn), V (u))

6 ηξ‖zn − u‖. (3.18)
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From (3.15), (3.16), (3.17) and (3.18), we have

‖un+1 − u‖ 6αn{2(
√

1− 2σ + δ2)+ ν + ρηξ
+
√

1− 2ρα + ρ2β2µ2}‖zn − u‖
+ (1− αn)‖un − u‖
= (1− αn)‖un − u‖ + αn‖(k + ρηξ + t (ρ))}‖zn − u‖,
= (1− αn)‖un − u‖ + αnθ‖zn − u‖, (3.19)

where

θ = k + ρηξ + t (ρ) (3.20)

t (ρ) =
√

1− 2ρα + ρ2β2µ2 (3.21)

In a similar way, from (3.7) and (3.14), we obtain

‖zn − u‖ 6 (1− βn)‖un − u‖ + βn{2‖un − u− (g(un)− g(u)‖
+ ‖un − u− ρ(N(wn, yn)− ρN(w, y))‖}

6 (1− βn)‖un − u‖ + βn(k + ρξη + t (ρ))‖un − u‖,
using (3.12), (3.18) and (3.21).

= (1− βn)‖un − u‖ + βnθ‖un − u‖, using (3.20),

6 ‖un − u‖. (3.22)

Combining (3.19) and (3.22), we obtain

‖un+1 − u‖ 6 {(1− αn(1− θ))}‖un − u‖

=
n∏
i=0

[1− (1− θ)αi]‖u0 − u‖. (3.23)

From (3.9)–(3.11), it follows thatθ < 1. Since
∑∞

n=0 αn diverges and 1−θ > 0,
it follows that

∏∞
i=0[1−(1−θ)αi] = 0. Hence the sequence{un} converges strongly

to u. From (3.22), we see that the sequence{zn} also converges strongly tou. From
(3.18), it follows that the sequence{yn} is a Cauchy sequence inH , so there exists
ay ∈ H such thatyn→ y. In a similar way, for allw ∈ T (u).
‖wn − w‖ 6 M(T (zn), T (u)) 6 µ‖zn − u‖,

which implies that the sequence{w̄n} is a Cauchy sequence, that is, there exists
w ∈ H such thatw̄n → w. Now by using the continuity of the operators,T , V , g,
JA(u) and Algorithm 3.1, we have

g(u) = JA(u)[g(u)− ρN(w, y)] ∈ H.
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It remains to show thaty ∈ V (u),w ∈ T (u), w̄ ∈ T (z) andȳ ∈ V (z). In fact,

d(w, T (u)) 6 ‖w − wn‖ + d(wn, T (u))
6 ‖w − wn‖ +M(T (un), T (u))
6 ‖w − wn‖ + µ‖un − u‖ → 0 asn→∞,

whered(w, T (u)) = inf{‖w − z‖ : z ∈ T (u)}. Since the sequences{wn} and{un}
are the Cauchy sequences, it follows thatd(w, T (u)) = 0. By invoking Lemma
3.1, we haveu ∈ H , w ∈ T (u), y ∈ V (u), which satisfies the quasi variational
inclusion (2.1) and consequentlyun → u, wn → w̄, yn → ȳ, wn → w and
yn→ y in H strongly, the required result. 2
REMARK 3.1. It is worth mentioning that the assumption 2.1 and the conditions
3.9–3.11, which play an important part in the derivation of the main result, that
is, Theorem 3.1, are very convenient and reasonable easy to verify in practical
problems, see Noor [14, 20]. For different choice of the operatorsT , V , N(·, ·),
andA(·, ·), these conditions are well known and have been already used in the
existence of a solution of variational inequalities and inclusions.
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