ﬁl‘ Journal of Global Optimizationl9: 141-150, 2001. 141
i‘ © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

Iterative Schemes for Multivalued Quasi Variational
Inclusions

MUHAMMAD ASLAM NOOR
Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, Canada
B3H 3J5 (e-mail: noor@mscs.dal.ca)

Abstract. In this paper, we suggest and analyze a class of iterative schemes for solving multivalued
quasi variational inclusions using the resolvent operator method. As special cases, we obtain a num-
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previously known results.
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1. Introduction

Multivalued quasi variational inclusion, which was introduced and studied by Noor
[19, 20], is a useful and important extension of the variational principles with a
wide range of applications in industry, physical, regional, social, pure and applied
sciences. Some special cases have been studied by many authors including Ding
[4], Huang [9], Noor [13-15] and Noor and Noor [12]. It is worth mentioning
that multival- ued quasi variational inclusions include mixed (quasi) variational
inequalities, complementarity problems and nonlinear programming problems as
special cases. Quasi variational inclusions provide us with a unified, natural, novel,
innovative and general technique to study a wide class of problems arising in dif-
ferent branches of mathematical and engineering sciences, There are a substantial
number of numerical methods including projection method and its variant forms,
Wiener-Hopf equations, auxiliary principle and descent for solving various classes
of variational inequalities and complementarity problems, Noor [16, 17]. It is well
known that the projection methods, Wiener-Hopf equations techniques and auxil-
iary principle techniques cannot be extended and modified for solving variational
inclusions. This fact motivated to develop another technique, which involves the
use of the resolvent operator associated with maximal monotone operator. In this
technique, the given operator is decomposed into the sum of two (maximal) mono-
tone operators. Such a method is known as the operator splitting method. The
operator splitting method and related technique have studied by many authors, see,



142 MUHAMMAD ASLAM NOOR

for example, Noor [21] and references therein. Using this technique, one shows that
the variational inequalities (inclusions) are equivalent to the fixed point problem.
This alternative formulation was used to develop numerical methods for solving
various classes of mixed variational inequalities (inclusions) and related problems,
see [4, 8-26]. In this paper, we use this alternative formulation to suggest and
analyse two-step iterative schemes for multivalued quasi variational inclusions.
Our results extend and generalise the previously known results.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denotéd-py
and|| - || respectively. LeCC (H) be a family of all nonempty compact subsets of
H.lLetT,V : H — C(H) be the multivalued operators agd: H — H be a
single-valued operator. Let(-, -) : H x H — H, consider the problem of finding
ue H,weT®u),ye V(u)such that

Oe Nw,y) + A(g(u), u), (2.1)

which is called the multivalued quasi variational inclusions, see Noor [19, 20].
Some special cases of (2.1) have been studied by Noor [13-15], Huang [9], Ding
[4], Noor—Noor and Rassias [22] and Uko [27] recently. A number of problems
arising in structural analysis, mechanics and economics can be studied in the frame-
work of the multivalued quasi variational inclusions; see, for example, [3, 25,
26].

2.1. SPECIAL CASES

I.If ACG,u) = 0¢(-,u) : H x H — H, the subdifferential of a convex, proper
and lower semi-continuous functi@f(-, ) with respect to the first argument, then
problem (2.1) is equivalent to findinge H, w € T(u), y € V(u) such that

(N(w, y),v—g)) +¢(,u) —¢d(gu),u) >0, forallveH, (2.2)

which is called the set-valued mixed quasi variational inequality. Problem (2.2) has
been studied by Noor [13,14] using the resolvent equations technique.

. If A(g(u,v) = A(g(u)), for all v € H, then problem (2.1) is equivalent to
findingu € H, w € T (u), y € V(1) such that

Oe Nw,y) + A(gu)), (2.3)

a problem considered and studied by Noor [15] using the resolvent equations tech-
nique. See also [11, 27] for the related work.

. If A(g(u)) = 3¢ (g(n)) is the subdifferential of a proper, convex and lower,
semicontinuous functiop : H — R U {+4o0o}. Then problem (2.1) reduces to: find
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ue H weT(u),ye V(u)such that
(N(w, y),v—gu)) +¢) —¢(g) > 0. (2.4)

Problem (2.4) is known as the set-valued mixed variational inequality and has been
studied by Noor—Noor and Rassias [22] and its special cases by Huang [9] and Uko
[27].

IV. If the function¢ (u, v) for allv € H, is the indicator function of a closed convex
setK (u) in H, that is,

0, if u e K(u)

9 = K u = i
o (u, v) ) (1) +o00, otherwise

then problem (2.2) is equivalent to findimge H,w € T(u), y € V(u), g(u) €
K (1) such that

(N(w,y),v—g)) >0, forallve K(u), (2.5)

a problem considered and studied by Noor [18], using the projection method and
the implicit Wiener-Hopf equations technique.

V. If K*(u) ={u € H, {u,v) >0, forallv € K(u)} is a polar cone of the convex
coneK (u) in H, then problem (2.6) is equivalent to findinge H, w € T (u),
y € V(u) such that

gu) € K@), N(w,y) € K*(u) and (N(w,y),gw)) =0,

which is called the generalized multivalued implicit complementarity problem and
appears to be a new one.

For special choices of the operatd@rsN (-, -), g and the convex s&{, one can
obtain a large number of complementarity and implicit (quasi) complementarity
problems, see, for example, [4, 8-23] and the references therein. We would like to
mention that the problem of finding a zero of the sum of two maximal monotone
operators, location problem, min, {f (1) + g(u)}, where f, g are both convex
functions, various classes of variational inequalities and complementarity problems
are very special cases of problem (2.1). Thus it is clear that problem (2.1) is general
and unifying one and has numerous applications in pure and applied sciences.

We now recall some basic concepts and results.

DEFINITION 2.1 [2]. If T is a maximal monotone operator @, then, for a
constanio > 0, the resolvent operator associated witis defined by

Jr(u) = + pT) Yw), forallue H,

wherel is the identity operator. It is known that the monotone opera&te max-
imal monotone if and only if the resolvent operafgris defined everywhere on the
space. Furthermore, the resolvent operdjors single-valued and nonexpansive.
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REMARK 2.1. Since the operatof(-, -) is @ maximal monotone operator with
respect to the first argument, for a constant 0, we denote by

Jaw = (I + pAw) ), forallu e H,

the resolvent operator associated wdttv, u) = A(u) for all v € H. For example,

if Alv,u) = d¢(v,u), forallu,v € H,and¢(v,u) : H x H — H is a proper,
convex and lower semicontinuous with respect to the first argument, then it is
well-known thatdo¢ (v, u) is a maximal monotone operator with respect to the first
argument. In this case, the resolvent operdiQy) = Jypw) IS

Jagay = (I 4+ pdd (-, u) ") = (I + pdgpu))*(u) forallu € H,

which is defined everywhere on the spale whered¢(u) = 3¢ (v, u) for all
v € H. For a recent state-of-the-art of the convex analysis, see Gao [5].

DEFINITION 2.2. For allui, u, € H, the operatotV (-, -) is said to be strongly
monotone and Lipschitz continuous with respect to the first argument, if there exist
constantsx > 0, 8 > 0 such that

(NG, w1)—N(, wy), ug—uz) >alug—uz|?, forall wye T (u1), wpeT (uz)
WIIN (ug, ) — N(uz, )|l < Bllur — uzl|.

In a similar way, we can define strong monotonicity and Lipschitz continuity of the
operatorN (-, -) with respect to second argument.

DEFINITION 2.3. The set-valued operatdt : H — C(H) is said to beM-
Lipschitz continuous, if there exists a constant 0 such that

MV @), V) <E&lu—v|, forallu,veH,

whereM (-, -) is the Hausdorff metric od' (H).

We also need the following condition.

ASSUMPTION 2.1. For alli, v, w € H, the resolvent operatof,,, satisfies the
condition

Jaww — Jamw| < v|u — v,
wherev > 0 is a constant.

Assumption 2.1 is satisfied when the operatois monotone jointly with re-
spect to two arguments. In particular, this implies thas monotone with respect
to first argument, see Noor [20].
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3. Main Results

In this section, we use the resolvent operator technique to establish the equivalence
between the multi-valued quasi variational inclusions and the implicit resolvent
fixed points. This equivalence is used to suggest an iterative method for solving the
quasi variational inclusions. For this purpose, we need the following result.

LEMMA 3.1. (u, w, y) is a solution of (2.1) if and only ifu, w, y) satisfies the
relation

gw) = Jaulgw) — pN(w, y)l, (3.1)

wherep > Ois a constant and/(,, = (I + pA(u))~1is the resolvent operator.
Proof.Letu € H, w € T(u),y € V(u) be a solution of (2.1). Then, for a
constanip > 0,

(21) < 0 pN(w,y) + pA(g(u), u)
= 0€ —(gu) —pNw, y) + U+ pAu))gu)
— g(u) = Jawlgw) — pN(w, y)],

the required result. a

From Lemma 3.1, we conclude that the multivalued quasi variational inclu-
sions (2.1) are equivalent to the implicit fixed point problem (3.1). This alternative
formulation is very useful from both theoretical and numerical analysis points of
view. We use this equivalence to propose some iterative algorithm for solving quasi
variational inclusions (2.1) and related problems.

The relation (3.1) can be written as

u=u—gu)+ Jauwlgw) — pN(w, u))]l, (3.2)

wherep > 0 is a constant.
This fixed point formulation allows us to suggest the following unified iterative
algorithm.

ALGORITHM 3.1. Assumethal’,V : H - C(H),g : H — H andN(, -),
A(-,-) : H x H — H are operators. For a givery € H, compute the sequences
{u,}, {w,}, {v.}, {w,} and{y,’} by the iterative schemes

Wy € T(up) @ [ wps1 — wyll < M(T (n42), T (un)) (3-3)
Yn € Vn) t lynsa = yull < MV upy1), V(un)) (3.4)
Wy € T(zn) : [Wng1 — Wall < M(T (2042, T (20) (3.5)
Yn € V(zn)) : [¥nt1 = Yull < MV (2n41), V(z0)) (3.6)

2 = 1= Bu, + Bulu, — gu,) + JA(u,,)[g(un) — pN(wy, y,)1} (37)
Upt1 = (1 - O{n)un + an{zn - g(zn) + JA(zn)[g(Zn) - ION(w_na y_n)]}a
n=012..., (3.8)
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where 0< @,, B, < 1;foralln > 0, and) 2 «a, diverges ando > O is
constant. Algorithm 3.1 is similar to the Ishikawa iterative scheme for solving quasi
variational inclusions. Fgs, = 0 and ¢, = A, Algorithm 3.1 has been studied by
Noor [19,20].

If A(-,v) = d¢(-,v) forall v e H, is an indicator function of a closed convex
setK (u) in h, thenJuq,) = Pk, the projection off onto the convex sek () in
H. Consequently, Algorithm 3.1 collapses to:

ALGORITHM 3.2. For giverug € H, wg € T (1), yo € V(ug), g(uo) € K (up),
compute the sequencés, }, {w,} and{y,} from the iterative schemes

Wy € T (uy) [ wngr — wall < M(T (ups1), T (un))

Wy € T(zn) & [Whv1 — wull < M(T (2n+2)s T (20))

Yo € V(Zn) t Vnv1 — Iull < M(V(2n41), V(20))

Yo € V(Un) 2 |ynt1 — yull S MV (uny1), V(un))

zn = (1= Buy + Bulun — g(n) + Pru,ylgwn) — pN (Wi, yu)1}

Unyr = (L —apu, + anfzn — 8(20) + Pr,)[8(zn) — pN Wy, Ya)1},

n=012 ...,

where O< «,, 8, < 1, foralln > 0 and)_ _, «, diverges. Algorithm 3.2 appears
to be a new one for multivalued variational inequalities (2.5).

For suitable and appropriate choice of the operalor¥, ¢ and the spaceH,,
K; one can obtain a humber of algorithms for solving variational inclusions and
related problems.

THEOREM 1. Let the operatoV (-, -) be strongly monotone with constant> 0
and Lipschitz continuous with constgfit> O with respect to the first argument.
Letg : H — H be strongly monotone with constafit> 0 and be Lipschitz
continuous with constant > 0. Assume that the operatav (-, -) is Lipschitz
continuous with constant > O with respect to the second argument ands M-
Lipschitz continuous with constaat> 0. LetT : H — C(H) be aM-Lipschitz
continuous with constant > 0. If Assumption 2.1 holds and

_a—A—kmgl _VIe— A-knEP — k(FPu? — 1?82~ k)

ﬁZMZ _ 772‘552 ﬂzluz _ 77252
(3.9)
o > (L= kng + Vk(B2u? — %62 (2 — k) (3.10)
onE <1—k (3.11)
k=2(/1-20 + 82 + v, (3.12)

then there existt € H, w € T(u), y € V(u) satisfying the multivalued quasi
variational inclusions (2.1) and the sequenges}, {w,}, {y.}, {w,} and{y,} gen-
erated by Algorithm 3.1 converges:iiow, y, w andy strongly in H respectively.
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Proof. If the Assumption 2.1 and the conditions (3.9)—(3.11) hold, then it has
been shown in [19, Theorem 3.1, pp. 106] that there exists a solutien H,
w € T(u), y € V(u) satisfying the variational inclusion (2.1). Lete H be the
solution of (2.1). Then

u=A—au+o,{u—g) + Jawlgw) — pN(w, y)1} (3.13)
=A-B)u+ Bulu —gw) + Jawlgu) — pN(w, y)1}. (3.14)

From (3.8), (3.13) and Assumption 2.1, we have

lunsr — ull < A — o) llun — up-all + nllzy —u — (g(za) — gl
+ anllJac,)[8(zn) = pN Wy, yu) 1= Jaulg @) —pN(w, y)]|
SA—a)llupy — upall + apllzn —u — (g(zn) — W)l
+ anllJac,)[8(zn) = pN W, Yu) 1= J a8 (2n) = pN Wy, yu)Ill
+ anllJaw8(@zn) = o N Wy, Yn)] = Jaw g () —p N (wy, Y]l
<A —a)llup —ull + 201z — u — (g(z0) — gl
+ anllzy —u — p{N @y, ya) — N(w, y)}
+ a4 plIN(w, yn) — Nw, Il + apvliz, — ull. (3.15)

Sinceg : H — H is strongly monotone Lipschitz continuous, we have

Iz, — u — (g(z0) — g))|?
= Iz, — ull® — 2(z, — u, g(z,) — gW)) + llg(z,) — gw)||?
<A —20 489z, —ull® (3.16)

SinceN (-, -) is a strongly monotone Lipschitz continuous operator with respect
to first argument, it follows that

Izn — u — p{N Wy, Tn) — N(w, )} I?
= |lz, — ull® = 20(N @y, %)) — N(w, %), 2 — u)
+ PPN Wy, ¥u) — N(w, 3,)11?
< (1—2pa + p*B2p®)llzn — ull®. (3.17)

Using the Lipschitz continuity of the operatdf(-, -) with respect to second ar-
gument and the M-Lipschitz continuity df, for all w € T(u), y € V(u), we
have

IN(w, yn) = Nw, Il < nlly. — vl
< MMV (zy), V(u))
< néllzn —ull. (3.18)
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From (3.15), (3.16), (3.17) and (3.18), we have

luns1r — ull <o {2(v/1—20 +8%) + v+ pné
+ V1-2pa + p2B2u2}||z, — ul|
+ A —ay)llu, —ull
= (1 - O{n)”un - MH + an”(k + /0775 + t(lo))}”ZI‘l - Ll||,

=1 —a)lluy, —ull + o,0llzy — ull, (3.19)

where
0 =k+ pn& +1t(p) (3.20)
1(p) = V1 - 200 + p2p2p2 (3.21)

In a similar way, from (3.7) and (3.14), we obtain

zn —ull <A = B)llun — ull + Bul2llun —u — (g(u,) — gl
+ lun —u — p(N(wy, yu) — pN(w, )|}
S A= Bolluy — ull + Bu(k + pén + t(p) |y — ull,
using (3.12), (3.18) and (3.21)
=1 - B lluy — ull + BuOllu, — ull, using (3.20)
<l — ull. (3.22)

Combining (3.19) and (3.22), we obtain
lunta —ull < {1 —an(X =) }Huy — ull
=[]t - @—6)aillluo — ull. (3.23)
i=0

From (3.9)—(3.11), it follows that < 1. Sinced -, «, divergesand £6 > 0,
it follows that[ ]~ ,[1—(1—6)«;] = 0. Hence the sequenéeg,} converges strongly
tou. From (3.22), we see that the sequefi;g also converges strongly to From
(3.18), it follows that the sequendge, } is a Cauchy sequence #f, so there exists
ay € H such thaty, — y. In a similar way, for allw € T (u).

Wy — wll < M(T(2,), T (W) < pllzn — ull

which implies that the sequend®,} is a Cauchy sequence, that is, there exists
w € H such thatw, — w. Now by using the continuity of the operatof®, V, g,
Jaw and Algorithm 3.1, we have

g(u) = JA(u)[g(u) - ,ON(W, y)] e H.
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It remains to show that € V(u), w € T(u), w € T(z) andy € V(z). In fact,

dw, T W) < lw— wyll +d(wn, T (1))

< |
< llw — wy |l + M(T (uy), T (u))
< lw — wy |l + pllu, —ull - 0 asn — oo,

whered(w, T (u)) = inf{|lw — z|| : z € T(u)}. Since the sequencés,} and{u,}
are the Cauchy sequences, it follows thét, 7 (1)) = 0. By invoking Lemma
3.1, we haver € H,w € T(u), y € V(u), which satisfies the quasi variational
inclusion (2.1) and consequently, — u, w, - w,y, — y, w, — w and
y» — y in H strongly, the required result. O

REMARK 3.1. Itis worth mentioning that the assumption 2.1 and the conditions

3.9-3.11, which play an important part in the derivation of the main result, that

is, Theorem 3.1, are very convenient and reasonable easy to verify in practical
problems, see Noor [14, 20]. For different choice of the oper&for¥, N (., -),

and A(-, -), these conditions are well known and have been already used in the
existence of a solution of variational inequalities and inclusions.
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